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Abstract

This review paper covers commonly used deep learning techniques for self-driving 

vehicles. Due to increased research in deep learning algorithms and commercial advances in 

autonomous vehicle hardware such as LIDAR and cameras, deep learning algorithms for 

autonomous cars have become an area of rapid development and research due to increased 

capabilities of deep learning algorithms. 

Deep learning research has focused on the use of Convolutional Neural Networks 

(CNNs), Recurrent Neural Networks (RNNs), Deep Reinforcement Learning (DRL), 

Convolutional-Long Short-Term Memory Models (C-LSTMs), Graph Neural Networks (GNNs),

and Hidden Markov Models and Chains (HMMs).  This literature review covers four key 

applications of deep learning in autonomous driving: scene classification, lane management, path

planning, and obstacle detection. These four applications are the main elements required for a 

fully self-driving vehicle to work safely and effectively over a long period of time. 

Results indicate that for scene classification, recurrent network models outperform 

convolutional models due to the temporal benefits that convolutional neural networks do not 

possess. In lane management, continuous deep reinforcement learning had the best performance 

to keep the car in the lane over discrete learning. This allowed a vehicle to stay in a lane without 

swerving off a path. Path planning is best performed when traffic is represented by an undirected

graph structure and fed into a graph neural network for path creation. Markov models were the 

strongest model for path decision-making. Obstacle detection was best performed by 

Convolutional-LSTMs over Convolutional Neural Networks and Recurrent Neural Networks due

to temporal and image processing benefits. 

Introduction
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Self-driving cars are one of the most researched topics in artificial intelligence due to the 

safety and efficiency benefits the automated world brings to our society. Automation brings the 

opportunity to prevent deaths caused by human error. Machines are designed for efficiency, 

making self-driving cars a key to a more fuel-efficient world. 

Previous surveys of autonomous vehicle technology have focused on convolutional 

neural networks (CNNs), deep reinforcement learning (DRL), and recurrent neural networks 

(RNNs). This paper surveys new approaches in the C-LSTM architecture, Deep Reinforcement 

Learning improvements, graph neural networks, and Markov models and chains. This paper aims

to provide insight into the current state of deep learning technologies for self-driving vehicles in 

the main fields of self-driving vehicles: obstacle detection, scene classification, lane recognition, 

motion control, traffic light and sign recognition, and path planning. 

Self-driving car performance is separated into six levels from 0 to 5 by the NHTSA 

(National Highway Traffic Safety Administration). Level 0 represents a human-driven car. Level

1 has basic adaptive cruise control and emergency braking. Levels 2-5 are what many consider to

be autonomous cars. Level 2 has partial autonomy with driver supervision and intervention to 

perform tasks. In level 3, the system is autonomous, but a driver can intervene. Level 4 self-

driving cars can intervene when there is a system malfunction unlike level 3. Level 5 self-driving

cars require zero human interaction and are considered the overall goal of self-driving. Levels of 

autonomous driving help understand the importance of different applications of self-driving 

vehicles.  

Notable companies working on autonomous vehicles include Google, Tesla, Apple, and 

Nvidia. These companies have accelerated the hardware capabilities of autonomous vehicles. To 

capitalize on the improvements in hardware, academic research has focused on the development 
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of newer machine learning techniques. The key focus of newer machine learning techniques is to

utilize the enhancement in visual data to output sensible driving commands (i.e., accelerate, steer

right, steer left) to the vehicle and to make the vehicle autonomous.  Key techniques being 

developed include C-LSTMs, graph networks, Markov models and chains, and other new 

technologies covered in this literature review. 

Obstacle detection

Obstacle detection is a key part of autonomous driving because it enables a vehicle to 

identify on-road hazards such as vehicles, traffic signs, animals, and other dangerous items on 

the road. By discovering the location of these objects, the autonomous vehicle performs a risk 

assessment of the roadway and avoids hazards to find a safe path. Level 3 to 5 self-driving cars 

are only achievable when the vehicle is capable of accurately detecting and identifying objects 

on the road promptly.
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Obstacle detection works in two parts. The first is the acquisition of images of the 

vehicle’s surroundings, typically acquired using cameras, RADAR, and LIDAR (Light Detection

and Ranging) (Badue et al., 2019). An image recognition algorithm, typically based on deep 

learning, then parses the images to help identify objects on the road. The deep learning algorithm

achieves this feat by being trained with prior image datasets containing labeled data on the 

common objects found on the road. Key deep learning techniques used for obstacle detection 

include convolutional neural networks (CNN), recurrent neural networks (RNN), and 

convolutional Long Short-Term Memory model (C-LSTM), of which C-LSTMs have garnered 

significant interest in the past two years.

CNN

In the early 2000s, DARPA (Defense Advanced Research Projects Agency) introduced 

obstacle challenges for self-driving cars. CNNs were the most successful technology and were 

the gold standard for obstacle detection due to their performance. CNNs primarily work by 

learning patterns to create filters to detect edges and other structures in images the network finds 

of interest. Despite being introduced over 20 years ago, CNNs are still one of the primary 

research interests and most effective methods in deep learning and obstacle detection. Parmar, 

Natarajan, and Sobha's recently developed CNN for obstacle detection boasts a 96.92% accuracy

(Parmar et al. 2019). This was achieved by focusing on the depth of objects in a scene to better 

understand their position. Despite progress in CNNs, a key challenge is CNNs inability to 

effectively understand the concept of data in a time series (i.e., videos) since all data is inputted 

simultaneously. 

RNN
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Since the late 1990s, the recurrent neural network has been the standard for temporal data

for its ability to provide the network a sense of time. RNNs understand the previously inputted 

data as previous information from a different time, whereas a convolutional network would view 

the data as inputted at once. In a comparison test performed by Parmar et al., ResNet, a type of 

recurrent neural network, outperforms an advanced CNN known as VGG by ~1-3% (Parmar et 

al., 2019). Despite the ability to understand time-oriented data, RNNs fall short when it comes to 

training time and lack the performance benefits of other temporal algorithms. 

C-LSTM

The first LSTM was created in 1997, 20 years later, the abilities of CNNs and LSTMs 

were combined for use in video data. The LSTM has been used by researchers to solve the 

training and performance issues flaws in recurrent networks. The LSTM solves these issues by 

introducing a new operation to recurrent networks, the ability to forget previous data, making it 

easier for networks to determine what parts of a video are useful and what can be safely ignored. 

Researchers have combined the LSTM with the benefits of convolutional networks to combine 

the two into a single model known as the C-LSTM. The C-LSTM model incorporates the 

benefits of both CNNs and LSTMs. The C-LSTM showed a ~2% performance boost over a CNN

in comparison tests (Cornacchia et al., 2018). Researchers have yet to focus on applying the new 

attention architecture. The use of attention has shown performance and time benefits in other 

applications of machine learning. 

CNNs C-LSTM

Accuracy (6 classes) 88.59% 90.56%
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Path Planning

Path planning is the ability to decide a trajectory a car must take to travel from one 

location to another safely. Proper path planning is essential to self-driving vehicles as it allows a 

car to change its path based on its environment. Research in other fields such as obstacle 

detection and lane recognition are beneficial to better path planning as the information learned 

from other models can influence safety precautions when path planning.

Path planning works by taking in positional input (from cameras, RADAR, or GPS), and 

information about the surrounding environment to create the optimal path, identifying any lane 

switches or turns along the way. Due to the complex nature of both the given information and the

possible output, path planning requires deep learning techniques to detect underlying structures 

in decision-making instead of surface-level pattern detection. Leading deep learning algorithms 

for path planning are Hidden Markov Models, Markov Chains, C-LSTMs, and Graph Neural 

Networks, of which Graph Neural Networks (GNNs) have been of focus in the last year.

Markov Models

Markov chains were introduced for use in self-driving vehicles in 2011 by Althof & 

Mergel. Althof & Mergel utilized Markov chains to predict the risks of driving through a path in 

a given environment (Althof & Mergel, 2011). The Markov models are based on a set of 

mathematical processes that use probability to predict future events. For self-driving vehicles, 

Markov models predict the risk of crashing if a vehicle drives through a certain path. A key 

challenge of Althoff & Mergell’s model was the overprediction of risk at higher speeds. Since 

then, researchers have developed a Hidden Markov model (HMM) to predict car behavior, 

achieving 83.34% mean accuracy (Wu et al., 2012). The use of the HMM to make decisions has 

been beneficial to the growth of stochastic methods of deep learning. The hidden Markov model 
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provides additional variability, allowing for the coverage of a more complex set of possibilities, 

improving accuracy and preventing overprediction. Although the changes Hidden Markov 

models bring are significant, understanding and processing video data is not part of the existing 

model and must be done separately, which is time-consuming and error prone. 

C-LSTM

C-LSTMs gained the attention of researchers in path planning after use in obstacle 

detection. Since then, the model has been modified to work with videos as well.

C-LSTMs use CNN created filters paired with an LSTM to understand time while effectively 

processing the image. Path finding is a challenge due to the fact that there are infinitely many 

possible correct paths from the model, so performance cannot be measured by a true/false metric 

but rather by how close the model was to the perfect solution. The existence of infinite correct 

solutions makes pathfinding a major challenge for researchers. Bai et al. have used C-LSTMs 

new method on a dataset open sourced by self-driving car company Comma.ai. Compared to the 

company's model, the C-LSTM had better accuracy and stability due to its use of time sequence 

and convolutions simultaneously (Bai et al., 2019). 

GNN

In 2017, the graph neural network was first introduced with the original intent of protein 

analysis since proteins follow the shape of a connected graph. Since then, general research 

demonstrates graphs are effective structures to represent complex relationships, such as traffic 

and cars. Specifically, in 2021, a model proposed by Sheng et al. inputs a graph into a network 

and predicts the trajectories of cars at an intersection (Sheng et al., 2021). The model 

outperformed C-LSTMs and CNNs while having a smaller model size (leading to faster 
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processing times). This is due to the fact that a graph represents a scene in a few data points, 

where a single frame in a video contains millions of data points. Shown in the table below are 

performance and efficiency benefits. 

Graph Network Baseline Model C-LSTM CV

RMSE (lower 

better)

1.49 1.61 1.86 3.42

Processing Time 

(MS)

0.044 0.322 (7.3x) N/A N/A

Scene Classification

Scene classification is the ability to identify the environment of the car through video and

LIDAR data. This is critical as a car must behave differently based on conditions such as 

weather. A driver must be more careful during snow or rain, and a self-driving vehicle must 

change its behavior based on the environmental conditions to have full level 5 autonomy. Factors

such as visibility and weather influence how the vehicle operator drives. 

Scene classification works by taking an image or video input and categorizing the 

environment, such as rain or fog. Since conditions are often not easily identifiable by common 

features, machine learning conditions make detection more effective. The main machine learning

techniques are CNNs and RNNs. Both have seen major improvements and derivatives with 

higher stability and accuracy. 

CNN
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Since the 1980s, CNNs have been used to classify images. CNNs were utilized for scene 

classification before the emergence of its need in self-driving vehicles. Over the last 40 years, 

there have been major improvements in image tasks such as scene classification. CNNs help 

classify scenes by inputting labeled images of scenes into a convolutional network. A 

convolutional network learns through network training what the best filters are to understand a 

scene. CNNs improved significantly with a new technique known as global covariance pooling 

(GCP) (Wang et al., 2020). CNN pooling works by downscaling an image by averaging pixels, 

leading to data loss over multiple iterations. Using GCP, the downscaling happens while taking 

statistical significance into account, greatly improving accuracy and stability while still 

downsizing the image. The use of binocular inputs has greatly improved the field of view and 

accuracy in CNNs. Instead of a single camera as the input, binocular inputs access two or more 

cameras for a larger field of view and more information for the network. Zhong et al. construct a 

model with two separate convolutional networks, for each camera (Zhong et al., 2018). These 

networks are combined into a single network to get a more accurate result than a single image. 

Mancini et al.’s two-camera method outperformed the monocular (single camera) model 

proposed in the KITTI dataset (Mancini et al., 2016).

Zhong et al. Mancini et al. 

RMSE (Lower is better) 4.451 6.863

RNN

Recurrent Neural Networks were introduced in the 1980s in a similar timeframe as 

CNNs. RNNs were not used for video data until researchers found that videos were best 

processed by understanding temporal structure. A recurrent model proposed by researchers in 
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2017 outperforms CNNs in scene classification (Phan et al., 2017). The model used both audio 

and visual data as inputs to classify the scene. The key issue behind RNNs is the longest train 

times and a training issue known as exploding gradients. Due to the complexity of an RNN, it's 

prone to large "exploding" errors when training, leading the network to have a hard time 

converging on an optimal solution. Further research must be performed on possible 

improvements to recurrent units and training methods such as gradient clipping to improve 

training accuracy.

Lane Management

Lane management and recognition is the ability to detect the road's lanes and stay on a 

given path. Lane recognition also is the ability to switch lanes safely. Lane management and 

recognition have been used for all levels of self-driving. Current cruise control systems offer 

lane-keeping technology known as adaptive cruise control.

 Lane management and recognition take input data from cameras and LIDAR sensors. 

These inputs are used to determine the location of lanes, and the car’s position relative to these 

lanes to keep the car in the lane. Common computer vision algorithms are inaccurate when in 

conditions such as rainstorms. Deep learning algorithms are implemented to improve accuracy in

these conditions. Common deep learning techniques are CNNs and Deep Reinforcement 

Learning (DRL).

CNN

Since Caltech’s Lane Detection dataset was introduced in 2008, interest in CNNs as a 

primary architecture has grown, a technology shift from the more commonly used computer 

vision techniques. These models commonly output a mask over the lanes instead of classification

(a more common output of a CNN). Researchers have focused on consistency during harsh 
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environments such as rain, where images might not be as clear. Lee et al. propose a multi-task 

CNN that improves the performance of lane detection by finding not only lanes but the vanishing

point – the point where the two lanes appear to become 1 point (where the two lanes vanish) (Lee

et al., 2017). Using the vanishing point, it is easier to verify the location of hard-to-discern lanes 

in harsh conditions. The model (88.4%) performed ~16% better than Caltech's baseline CV 

model (72.3%). The new model outperformed the state-of-the-art CNN model (84.8%) by ~2%. 

DRL

Deep reinforcement learning (DRL) for autonomous vehicles gained popularity in 2012 

when Xu et al. proposed the first reinforcement learning driving system at ICRA (IEEE 

International Conference on Robotics and Automation) (Xu et al., 2017). DRL works by trial and

error, attempting to reach a specified goal instead of a correct answer. In lane management, the 

goal is to either switch to the lane with minimal risk to others or stay in the lane without crashing

into others. In 2016, a model introduced by Sallab et al. kept lanes indefinitely through deep 

reinforcement learning (Sallab et al., 2016). The model rewarded staying on the simulated track 

and gave less reward depending on the risk of how the car behaved. For example, running off the

track gave the lowest reward. Sallab et al. compared two different algorithms for deep 

reinforcement learning, discrete and continuous. Discrete learning is similar to a discrete 

function, where the algorithm is working at time intervals and is not constantly in check of its 
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lane. Discrete learning was not effective at keeping the car in lane due to the algorithm not 

updating its position constantly, causing the vehicle to drive off the lane until corrected at the last

minute. Continuous deep learning, like a continuous function, performed adequately and 

constantly kept the car in the lane over a long period of time. Deep reinforcement learning's 

success in lane keeping has opened future research into lane switching, with a focus on 

improving efficiency while lowering accidents. Wang et al. found current models commonly 

focus on the error of the target vehicle, but the best way to train DRL is to focus on all cars to 

create the best-trained vehicle (Wang et al. 2019). Cooperation led to a better overall driving 

environment compared to a focus on the outcome of a single target vehicle.

Conclusion

One of the most researched topics in autonomy and deep learning are self-driving cars. 

Due to this, many new algorithms have been applied to self-driving cars. This review covered 6 

main technologies: CNNs, RNNs, C-LSTMs, GNNs, DRL, and Markov Models and Chains. 

These technologies were covered in 4 different fields of application: obstacle detection, path 

planning, scene classification, and lane management. Although current models perform with high

accuracy, improvements are still a major research area in the artificial intelligence community. 

Specifically, developments in C-LSTMs, DRL, and GNNs are still needed.

In conclusion, C-LSTMs are more effective than RNNs and CNNs at obstacle detection 

and path planning but are outperformed by GNNs in path planning. GNNs are the newest 

technology in artificial intelligence and autonomous vehicles and require more research to verify 

their effectiveness. Markov Models and Chains are useful tools for probability but are 

outperformed by other deep learning techniques that employ neural networks. In DRL, a shift of 

focus from single car algorithms to cooperation leads to greater accuracy. CNNs and RNNs still 
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showed impressive results that allow them to be used as baseline models for improvements such 

as C-LSTMs. Future research into vehicle autonomy can greatly improve the safety and 

efficiency of transportation. Improvements in transportation decrease fatalities and allow for 

faster and longer travel.
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